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Abstract

Using the Hamiltonian structure of the Vlasov equation, we
develop a general, relativistic, three-dimensional model of
beam transport based on phase space moments of the beam
particle distribution. Evolution equations for these mo-
ments are derived from the non-canonical Poisson bracket
for the Vlasov equation. In this model, the beam cen-
troid experiences the full non-linear forces in the system
while the higher order moments are coupled to both the
centroid and to various spatial derivatives of the applied
fields. For example, when moments up to second order are
retained, the physics content is similar to considering lin-
earized forces. Given the large number of equations (there
are 27 equations when all second order moments are kept)
and their algebraic complexity, the use of symbolic com-
putation in the derivation was critical to ensuring the cor-
rectness of the equations. This approach also allows for
analytical verification of conservation laws associated with
the model. The initial investigations [1] have considered
only externally applied fields, however in principle space-
charge forces can also be included. We discuss the neces-
sary extensions to the basic theory needed to model ioniza-
tion cooling for the muon collider[2].

1 INTRODUCTION

Using moments to construct reduced models of phase space
dynamics is not a new idea; for example, see Refs. [3, 4]
for a linac application and Ref. [5] for general approach to
Hamiltonian field theories. The desire such models is clear.
Tracking individual particles is computationally very inten-
sive (if reasonable statistics are to be obtained) and in many
instances the detailed information that tracking produces is
not of great interest. Furthermore, often the beam dynam-
ics is largely linear so representing the bulk of the beam
by particles is inefficient. One-dimensional moment equa-
tions are of significant pedagogical interest as they provide
a simple means for understanding a variety of elementary
beam dynamics. While such models are of little use in de-
tailed studies of beam transport, there still exists the pos-
sibility of extracting much of the beam behaviour without
resorting to tracking individual particles.

Here we present a formalism for a general, fully rel-
ativistic, three-dimensional moment description of beam
transport based upon the noncanonical Hamiltonian struc-
ture of the Vlasov-Poisson equation [6]. This approach has
many attractive features. By using a formulation based
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on Poisson brackets, derivation of the equations of mo-
tion for the moments is purely mechanical and is ideally
suited to the application of symbolic manipulation. In this
approach, one approximates the Hamiltonian and bracket
in terms of moments and then uses Hamilton’s equations
to obtain equations of motion. Not only is this procedure
less cumbersome than directly averaging the single particle
equations, it also eliminates the difficulty of determining
(in a more lessad hoc fashion) a consistent ordering of
the moment expansion. As is common in this type of re-
duction, one finds that even when the external forces are
linearized, for the model to conserve energy (and typically
other invariants also, if they exist) it is necessary that the
evolution equations retain various terms that are nonlin-
ear in the moments. When the equations are derived from
a Poisson bracket and Hamiltonian these nonlinear terms
automatically appear as needed. Moment representations
are intrinsically statistical in nature and are not suscepti-
ble to (nor sensitive to) noise associated with finite parti-
cle affects. Terms in the moments equations have two ori-
gins: kinematic terms (i.e., those terms associated with the
free-streaming of phase space) and terms associated with
electromagnetic forces. It turns out the that the kinematic
terms have the form of an expansion in the reciprocal of
the centroidγ-factor while the electromagnetic forces are
essentially Taylor expanded about the centroid location to
an order that depends on the order of the moments being
retained. Typically one finds that the moment equations do
not close,i.e., the equations of motion for a set of moments
of a particular order tend to include couplings to moments
of higher order. There are numerous methods for imposing
a closure. The observation that the moment model is a com-
bination of an asymptotic expansion inγ−1 and a Taylor
expansion of the applied forces means that for even mildly
relativistic beams (γ ∼ 2) and for forces that do not vary to
drastically over the extent of the beam, simple truncation is
a reasonably accurate closure. It is also the case that impos-
ing a closure may well destroy the Hamiltonian structure of
the moment system (in the sense that the bracket typically
no longer satisfies the Jacobi identity). While philosophi-
cally one might prefer an approximation that fully retains
the Hamiltonian character of the underlying dynamics, this
loss does not lessen the power of the bracket approach to
deriving equations of motion.

2 HAMILTONIAN FORMULATION OF
THE VLASOV EQUATION

We examine the simplest case where we ignore the self-
interactions of the beam (i.e. we ignore space charge ef-



fects), although more general models are possible. In this
case, the beam dynamics are governed by the relativistic
Vlasov equation withexternalfields:

∂f

∂t
+ v ·∇f +

q

m

(
E +

v
c
×B

)
·∇p f = 0 , (1)

where f is the phase-space particle density,q and m
are the particle mass and charge, respectively and∇p =
∂/∂p. Writing the particle phase-space distribution func-
tion in terms of thecanonicalmomentum,p, the relativistic
Vlasov equation can be written as [6]:

∂f

∂t
= { f , H } (2)

where the HamiltonianH is given by:

H =
∫
d3r d3p

(
γ m c2 + φ

)
f(r,p) . (3)

The (noncanonical) Poisson bracket{ · , · } of any function-
alsF andG of f is given by

{F , G } =
∫
d3r d3p f

[
δF

δf
,
δG

δf

]
(4)

where[ · , · ] is the usual phase-space Poisson bracket:

[F , G ] =∇F ·∇pG−∇G ·∇p F . (5)

For the purposes of studying charged-particle optics, it
is more convenient to expressf in terms of the mechan-
ical momentum,p = p − q/cA, whereA is the vector
potential. Under this coordinate transformation

∂

∂t
−→ ∂

∂t
− q

c

∂A
∂t
·∇p , (6)

∇p −→ ∇p , (7)

∇ −→ ∇− q

c
∇Ak

∂

∂pk
. (8)

Applying this change of variables to the brackets gives,

{F , G } =
∫
d3r d3p f

[
δF

δf
,
δG

δf

]
xp

+
q

c

∫
d3r d3p f B ·∇p

δF

δf
×∇p

δG

δf
, (9)

where[ · , · ]xp is given by (5) withp replaced byp and
we will subsequently suppress this subscript. The Vlasov
equation now reads

∂f

∂t
− q

c

∂A
∂t
·∇p f = { f , H } (10)

Upon close examination of (10), we see that−(1/c)∂A/∂t
enters the expression for∂f/∂t in exactly the same way as
does∇φ. The following trick is useful (but not necessary):

make the formal identification1∇ϕ =∇φ+(1/c)∂A/∂t,
and write (10) as

∂f

∂t
=
{
f , H̃

}
, (11)

whereH̃ is obtained fromH by the replacementφ → ϕ.
The chain rule can then be used to obtain the time derivative
of any functional off :

dF

dt
=
∫
d3r d3p

δF

δf

{
f , H̃

}
+
∂F

∂t

=
{
F , H̃

}
+
∂F

∂t
. (12)

3 MOMENT EQUATIONS

Our moment models are based on an expansion of the phase
space coordinates about the location of the beam centroid:

zj = 〈zj〉+ δzj , (13)

where{zj}6j=1 = {x, y, z, px, py, pz} and 〈·〉 is the nor-
malized phase-space average. To simplify the presentation,
we keep moments only up to second order, but it is clear
that these procedures can be carried out to arbitrary order.
We define

Mi ≡ 〈zi〉 and Mij ≡ 〈δzi δzj〉 . (14)

The first order moments,Mi, represent the beam centroid,
while the second-order moments,Mij , represent the phase-
space extent of the beam.

Substituting (13) into the expression for̃H and keeping
terms through second order inδzi, we obtain a Hamiltonian
for the moment system:

Ĥ = f0

(
γ0mc2 + q ϕ

)
− f0

mc2

2γ3
0

〈δp2
x〉 〈px〉2

+ 〈δp2
y〉 〈py〉2 + 〈δp2

z〉 〈pz〉2 + 2〈δpx δpy〉 〈px〉 〈py〉

+ 2〈δpx δpz〉 〈px〉 〈pz〉+ 2〈δpy δpz〉 〈py〉 〈pz〉


+ f0
mc2

2γ0

〈δp2
x〉+ 〈δp2

y〉+ 〈δp2
z〉


− f0 q

 〈δx2〉
2

∂Ex
∂x

+
〈δy2〉

2
∂Ey
∂y

+
〈δz2〉

2
∂Ez
∂z

+ 〈δx δy〉 ∂Ex
∂y

+ 〈δx δz〉 ∂Ex
∂z

+ 〈δy δz〉 ∂Ey
∂z

, (15)

whereγ0 =
[
1 + (〈px〉2 + 〈py〉2 + 〈pz〉2)/(m2 c2)

]1/2
,

f0 =
∫
d3r d3p f , and all external fields are evaluated at

the centroid position.
Since moments are clearly functionals off , (12) and (9)

give the necessary equations of motion. In evaluating (9),

1In general this is equation is not solvable forϕ; the solvability condi-
tion is∂B/∂t = 0.



note that for a functional off that can be written as afunc-
tion of the moments alone,i.e., F [f ] = F̂ (Mi,Mij), we
have

δF

δf
=

∂F̂

∂Mi

δMi

δf
+

∂F̂

∂Mij

δMij

δf

=
∂F̂

∂Mi

1
f0

zi +
∂F̂

∂Mij

1
f0

zi zj . (16)

Combining the above we can write the equations of motion
for the moments:

Ṁi =
{
Mi , Ĥ

}
and Ṁij =

{
Mij , Ĥ

}
. (17)

While evaluating (17) is conceptually straightforward,
these equations are both numerous (there a total of 27 mo-
ments through second order) and algebraically very com-
plex. To overcome this complexity and to ensure the
correctness of the resulting equations, we have imple-
mented (9), (12), and (16) using symbolic algebra. In ad-
dition to deriving the equations, our symbolic algebra pro-
gram also produces the necessary source code for the nu-
merical implementation of these equations. This approach
not only increases our confidence that the final simula-
tion code is correct but also enables symbolic identification
and verification of a variety of conserved quantities (which
are then used as diagnostics in the simulation). Examples
of such invariants include, energy, six-dimensional emit-
tance (detMij), angular momentum (in axially symmetric
systems), and longitudinal and transverse emittance sepa-
rately, in systems where the dynamics decouples.

Note that, exactly one expects, the first two terms inĤ
are the Hamiltonian for a single particle, whose trajectory
is that of the beam centroid. As higher order moments are
added to the model, this “particle” acquires internal struc-
ture (in6-d phase space) which results in additional terms
in the equations of motion of the first order moments.

4 APPLICATION TO MUON COOLING

To study the ionization cooling of muons we must extend
our formulation to include the non-Hamiltonian interaction
of the beam with material absorbers. This interaction can
be divided into inelastic (ionization energy loss) and elas-
tic (“multiple scattering”) parts. The inelastic part can be
viewed as a frictional force in the direction of the beam mo-
mentum and the contributions to the moment equations can
be found by taking appropriate averages of this force term.
The elastic piece is due to small angle scattering in random
directions, and thus can only be included in a statistically
averaged sense. We have developed a simulation code that
takes these effects into account for studying a section of the
transverse cooling channel [7] of the muon collider. Our
preliminary results [2] show that the moment model is in
very good agreement with particle tracking studies and the
simulation promises to be a useful design tool.

5 CONCLUSIONS

We have presented a formalism for constructing models of
beam dynamics based upon moments of arbitrary order. It
is also possible to construct “semi-discrete” models; for ex-
ample, by averaging only over the transverse phase space,
one obtains a system where the transverse dynamics are de-
termined by moments while a full kinetic description is re-
tained longitudinally. One can also envision constructing a
δf method using a moment formalism to represent the core
of a beam. Such a method could yield important kinetic
information (say for studies of halo formation) without the
computational burden of using particles to model the beam
core. As an application of moment methods, we have stud-
ied an ionization cooling channel for the muon collider and
have found close agreement between our simulation and
full particle tracking, verifying the utility of moments mod-
els as design tools. Here we have closed the system by dis-
carding higher-order moments, however, other closures are
equally justified: for example, one can, by ignoring cor-
relations, approximate the higher moments using products
of lower order moments. Understanding how the choice of
closure affects the accuracy of the model will be the subject
of future work.
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